Self Check ch 14
1) Why do we need the temp variable in the swap method? What would happen if you simply assigned a[i] to a[j] and a[j] to a[i]?
Answer: Dropping the temp variable would not work. Then a[i]and a[j] would end up being the same value.
2) What steps does the selection sort algorithm go through to sort the sequence 6 5 4 3 2 1?

	1
	5
	4
	3
	2
	6

	
	
	
	
	
	

	1
	2
	4
	3
	5
	6

	
	
	
	
	
	

	1
	2
	3
	4
	5
	6

3) Approximately how many seconds would it take to sort a data set of 80,000 values?
Answer: Four times as long as 40,000 values, or about 36 seconds
4) Look at the graph in Figure 1. What mathematical shape does it resemble?
 Answer: A parabola.
5) If you increase the size of a data set tenfold, how much longer does it take to sort it with the selection sort algorithm?
Answer: It takes about 100 times longer.
6) How large does n need to be so that n2/2 is bigger than 5n/2 - 3?
Answer: If n is 4, then n2/2 is 8 and 5n/2 - 3 is 7.

7) Why does only one of the two while loops at the end of the merge method do any work?
Answer: When the preceding while loop ends, the loop condition must be false, that is,
iFirst >= first.length or iSecond >= second.length (De Morgan’s Law).
8) Manually run the merge sort algorithm on the array 8 7 6 5 4 3 2 1.
Answer:
First sort 8 7 6 5.
Recursively, first sort 8 7.
Recursively, first sort 8. It’s sorted.
Sort 7. It’s sorted.
Merge them: 7 8.
Do the same with 6 5 to get 5 6.
Merge them to 5 6 7 8.
Do the same with 4 3 2 1: Sort 4 3 by sorting 4 and 3 and merging them to 3 4.
Sort 2 1 by sorting 2 and 1 and merging them to 1 2.
Merge 3 4 and 1 2 to 1 2 3 4.
Finally, merge 5 6 7 8 and 1 2 3 4 to 1 2 3 4 5 6 7 8.
9) Given the timing data for the merge sort algorithm in the table at the beginning of this section, how long would it take to sort an array of 100,000 values?
Answer: Approximately 100,000 × log(100,000) / 50,000 × log(50,000) = 2 × 5 / 4.7 = 2.13 times the time required for 50,000 values. That’s 2.13 × 97 milliseconds or approximately 207 milliseconds.
10) If you double the size of an array, how much longer will the merge sort algorithm take to sort the new array?
Answer: (2n log(2n)/n log(n)) = 2(1+ log(2)/log(n)). For n > 2, that is a value < 3.
11) Suppose you need to look through 1,000,000 records to find a telephone number. How many records do you expect to search before finding the number?
Answer: On average, you’d make 500,000 comparisons.
12) Why can’t you use a “for each” loop for (int element : a) in the search method?
Answer: The search method returns the index at which the match occurs, not the data stored at that location.
13) Suppose you need to look through a sorted array with 1,000,000 elements to find a value. Using the binary search algorithm, how many records do you expect to search before finding the value?
Answer: You would search about 20. (The binary log of 1,024 is 10.)
14) Why is it useful that the Arrays.binarySearch method indicates the position where a missing element should be inserted?
Answer: Then you know where to insert it so that the array stays sorted, and you can keep using binary search.
15) Why does Arrays.binarySearch return -k - 1 and not -k to indicate that a value is not present and should be inserted before position k?
Answer: Otherwise, you would not know whether a value is present when the method returns 0.
16) Why can’t the Arrays.sort method sort an array of Rectangle objects?
Answer: The Rectangle class does not implement the Comparable interface.
17) What steps would you need to take to sort an array of BankAccount objects by increasing balance?
Answer: The BankAccount class needs to implement the Comparable interface. Its compareTo method must compare the bank balances

